
A Concurrent Physics Engine
Nitish Gupta

College of Engineering and
Computer Science

University of Central Florida
Orlando, FL 32816

Email: nitesh4146@gmail.com

Sumit Bhattacharya
College of Engineering and

Computer Science
University of Central Florida

Orlando, FL 32816
Email: er.sumitbhattacharya@gmail.com

Tyler Truong
College of Engineering and

Computer Science
University of Central Florida

Orlando, FL 32816
Email: graxrabble@gmail.com

Abstract—We will compare the performance of different spatial
data structures for concurrent broadphase collision detection.
This includes Lists, Hash tables, and Quad Trees.

I. IMPORTANCE OF WORK

T he Broadphase Collision Detection is an important step
within a physics engine which greatly impacts the per-

formance of a physics engine. It is also the hardest part of
the physics engine to parallelize. Kinematics and Collision
Resolution is embarrassingly parallel: solved by dividing an
array into sections and then giving each section to a thread.
Brute Force Broadphase Collision detection has a runtime
complexity of O(n2). Ignoring these data structures will result
in a performance penalty even if all other parts of the physics
engine are parallelized.

II. TECHNICAL OVERVIEW

We want to measure the performance of the different
data structures in the context of a real time physics engine.
This physics engine will move circles with random velocities
around a screen. When a circle collides with the edge of the
screen or another circle, it will bounce off and travel in another
direction. The physics engine will divide time into equal slices
called frames. The simulation will run at 60 FPS. Each frame
will do the following in this order: Kinematics, Collision
Detection, Collision Response. Kinematics requires add() ,re-
move() and update() operations as objects move around the
world. Collision Detection requires a query() operation to find
objects that are near each other.

Thread pooling is the basis for concurrency within the
physics engine. All kinematics, collision detection and colli-
sion resolution will be divided into tasks and then submitted to
the Thread pool. The threads will then take a task and execute
it.

Spatial Data Structures are used by the physics engine to
speed up the most intensive step, collision detection. Kine-
matics will update the objects position and will call data
structures update() operation so objects which has moved
can be reindexed. The collision detection will call the data
structures query() operation to get a list of possible collisions.
The collisions will be verified to produce a list of all collisions.
These collisions will be passed to Dynamics which will update
the position and velocities of the objects.

One of the data structures we propose is a concurrent grid.
Objects will be indexed into a cell within the grid. Each cell
uses a list to store references to objects that are contained
within the cell. Objects that border multiple cells will be
stored as a reference in multiple cells. Each object will have
a corresponding reference object to keep track of its current
references. The reference object is required by the update() and
remove() method to help it delete its old references as it moves
around within the world. References are lazily deleted because
its preferable to have false positives over false negatives. False
positives results in an object getting collision tested even if
its not colliding which will slow down the simulation. False
negatives results in missing collisions which can result in
objects passing through each other. The query() operation
should be wait free since it is read only and it returns objects
that have not been logically deleted.

III. TECHNICAL DETAIL

Concurrent Grid is composed as an array of lists. Each
list represents a cell on the grid. The lists are concurrent
array based queues. The queue update(), add(), and remove()
operations should only require quiescent consistency with
operations taking place once the Kinematics stage of the
simulation is complete. Below is pseudocode for the queue:

Class cell {
Class Ref {

Int object_id;
// bitfield of the reference’s status
// 00 - free
// 01 - locked
// 10 - logical deleted
// can be improved with bit stealing.
int status;

};

Ref array[];

Bool add(object_id) {
For (auto &ref : array) {
Test = ref.status.CAS(01)
Switch (test) {
Case 0:

Ref.object_id = object_id;
ref.status.set(00);
Return true;



Break;
Case 1:

Continue;
break;

Case 2:
Continue;
break;

}
Return false;

};

Void remove(object_id) {
For (auto &ref : array) {

Test = ref.status.CAS()
Switch (test) {
Case 0:

continue;
Break;

Case 1:
ref.status.set(10);
Return;
break;

Case 2:
continue;
break;

}
};

};

IV. RELATED WORK

There are few works based on concurrent spatial data
structures. Most of the literature on spatial data structures was
written before lock free programming. The exception is the
QuadBoost QuadTree paper which was published in June of
2016, 4 months ago. The paper starts by mentioning a basic
CAS QuadTree implementation. Because a quadtree has four
children, all of their pointers cannot be changed atomically.
This is solved with a flag which locks the node. Another
problem mentioned in the paper is lazy deletion. Lazy deletion
causes the tree to grow too large; objects will move around
the world, forcing the quadtree to add and delete many nodes.
When a node has no more objects, it becomes empty. Those
empty nodes which are lazy deleted consumes lots of memory.
One solution the authors found was to use state transitions to
keep track of how many empty nodes are on a branch and
then force a compress operation on that branch when its full
of empty nodes. The compress operation will pull objects up
to parent instead of leaving leaving them in the chain of empty
nodes. This will allow the tree to free up old memory.

V. APPENDIX

A. Physics Engine

Physics Engine is a class or library which handles motions
and collisions of a set of objects. Motion and collision are
usually handled with Kinematics and Dynamics equations.
Videogames are an example of programs that use physics
engines. The video game will tell the engine to keep track
of all players and projectiles. The engine will report to the
video game when a projectile hits a player or when a player

walks into a wall. This allows the programmer to focus on
other tasks like Graphics or AI.

1) Collision Detection: Collision Detection is the process
of detecting collisions between objects. Imagine two circles
traveling towards each other in a head on collision. The physics
engine must detect the exact time t when the two circles collide
and then their new velocities after the collision. Physics engine
literature commonly splits collision detection into two steps:
narrowphase and broadphase.

Fig. 1. Box2D implementation

2) Narrowphase: Narrowphase focuses on detecting the
TOI of a collision between two objects. The two objects
are then backtracked to a previous position so they stop
intersecting with each other. A new velocity or trajectory is
then computed using Collision Resolution.

3) Brute Force: Brute Force Collision Detection has a
runtime complexity of O(n2). This is because the set of all
collisions is a permutation of every pair of N objects.

Fig. 2. Brute Force Collision Detection

This runtime is not noticeable with 100 objects but is very
noticeable with 1000 objects. Even though the number of jects



increased by 10 folds, the runtime complexity increased by
100 folds.

4) Broadphase: Broadphase Collision Detection is used to
accelerate Collision Detection by sorting objects into spatial
data structures: Lists, Hash tables, and Quad Trees. Objects
are sorted by their position within the world. All of the above
data structures take advantage of the fact that only objects that
are nearest to each other need to be checked for collision.

B. Lists

Lists are the simplest spatial data structures. Imagine two
objects on a number line. The numbers 2 and 4 are closer
to each other than 2 and 24, so the numbers 2 and 4 are
more likely to collide with each other compared to 2 and 24.
Lists are used by the SAP or Sweep And Prune algorithm
which is based on the converse of the SAT or Separating
Axis Theorem. SAT states that objects can only collide if
they intersect on all axises. The converse is that objects
cannot collide if they do not intersect on one of many axis.
This number line will be referred to as the chosen axis. SAP
works by checking for collisions between pairs of objects
that are near each other on the chosen axis; this is the Sweep
step. SAP will check the proximity of objects near a query
point on the chosen axis. If an object does not intersect with
the query point then the object will not collide; this is the
Prune step. The remaining pairs that were not pruned could
collide and will be passed to either another layer of SAP on
a different axis or to the narrowphase collision detection.

Fig. 3. Sweep and Prune: Axis Comparison

• Advantages of Lists:
Lists are the simplest data structures to implement.
This also means they are the easiest data structure
to parallelize. The data structure will focus on
implementing the swap() operation over the add()
and delete() operations. Imagine a 2d world with two
balls named A and B. A is located on the left while B is
located on the right. These two balls are moving towards
each other along the horizontal axis which is also the

chosen axis for SAP. Note that it is possible for A and
B to not collide if they have different heights within the
2d world. By not colliding they will pass through each
other and swap positions along the chosen axis. Now, it
is B that is located on the left while A is located on the
right. Instead of deleting nodes and adding nodes to the
List, they can be swapped. The swap operation() avoids
garbage collection of the nodes.

• Disadvantages of Lists:
They check for collisions on a single axis. The algorithm
will break down if the objects do not spread out along
the chosen axis. Imagine Super Mario World which has
Mario and all of the enemies on running along platforms
at different heights. The SAP will fail if the vertical axis is
chosen because most of the objects will cluster along the
same height. A better axis would be the horizontal axis
because all of the objects on the screen will be spread out
more. One solution is to calculate the standard deviation
along multiple axis and choose the one with the largest
deviation.

C. Grids
Grid data structure: imagine one airplane in New York

and another airplane in California. The two airplanes are
so far apart that checking for collision is not necessary.
The 50 states within America act as the grid. Airplanes can
only collide with each other in two cases: both planes are
within the same state and both planes are near the borders
between neighboring states. Grids are normally composed
of square cells for ease of implementation. The Grid data
structure works by mapping all objects into cells. This speeds
up collision detection because each cell divides Broadphase
Collision Detection into series of small Brute Force Collision
Detections.

Fig. 4. Grid Analogy

• Advantages of Grids:
Grids are the most efficient data structure for sparse,



uniformly distributed, and homogeneous objects. Imagine
100 circles of the same size spaced in a lattice pattern
across the world where each circle has its own cell. The
Query() operation works by returning all other objects
within the same and neighboring cells. The add() and
remove() operation can be implemented as a lookup
table of lists where each cell is represented by a list. The
list data structure can easily be parallelized by lock free
techniques. And the lookup table can distribute threads
across the data structure, reducing contention.

• Disadvantages of Grids:
Grids degrade when objects are not sparse, uniform and
homogenous. The worse case is where all objects are
clustered into same cell. This Grid will degrade into Brute
Force collision detection. When an object is larger than
a single cell of the Grid, the Grid must store that object
into multiple cells. This means that the grid must perform
multiple add() and remove() operations for every cell that
contains the large object. The Grid must also handle
objects that are on the border between multiple cells.
There are two solutions: store the object into multiple
cells similar to the large object problem or store the
object in one cell and the query() operation will check
neighboring cells.

D. Quadtrees

Quadtrees are similar to the grid based data structures with
one added feature. They recursively subdivide the space of
all objects into quadrants. This means that every node in
the tree will have four children, one for each quadrant. The
tree gives this spatial data structure a runtime complexity of
O(log n) because each traversal in the tree will prune 3/4th

of the possible collisions.

Fig. 5. A Quadtree

• Advantages of Quadtrees:
Quadtrees can recursively divide space into smaller
chunks. They can efficiently handle objects of different
sizes. Grids store large objects in multiple cells while
Quadtrees can subdivide cells until they fit around
the object. Quadtrees are less vulnerable than Grids

to objects clustering near each other. Where the Grid
degenerated into Brute Force Collision Detection, the
Quadtree can subdivide cells.

• Disadvantages of Quadtrees:
Quadtrees are more complicated to implement because
they involve creating and deleting nodes. This means
that new problems such as memory management,
garbage collection and ABA must be considered. The
Quadtree will constantly change shape as objects move
around in the world. Imagine a racing game where cars
move around a track. The track will be subdivided into
quadrants which are recursively subdivided until fitting
the nodes fit the cars. When the cars move from the
top right corner to the top left corner, all of the tree
structure must be deleted from the top right quadrant
and recreated on the top right quadrant.

E. Collision Resolution

Collision Resolution is the process of calculating an
objects new velocity after a collision. The programmer has
full artistic freedom to decide how objects should behave. An
example of a parameter is elasticity or the bounciness of an
object: a rubber ball should bounce of the ground while a
sandbag will stick to the ground. Another parameter is mass:
lighter objects should experience a greater change in velocity
when bouncing off a heavier object. Resolution is not a focus
of this paper, so a simple reflection is used to compute the
new velocities of objects.

F. Thread Pooling

Thread Pooling is a technique which creates a set number
of threads then delegating tasks to the threads. Initializing and
Destroying threads is expensive which is why a pool of threads
are kept alive. It works by dividing computation into a unit
called a task. A task can be checking if a pair of objects are
colliding. A FIFO concurrent queue is used to store the tasks.
Available threads will fetch the tasks from the queue then
execute each task. This provides load balancing between the
threads.

REFERENCES

[1] K. Zhou, G. Tan and W. Zhou, Quadboost: A Scalable Concurrent
Quadtree.

[2] M. Kornacker and D. Banks, High-Concurrency Locking in R-Trees.
[3] E. Hastings, J. Mesit and R. Guha, Optimization of Large-Scale, Real-

Time Simulations by Spatial Hashing.
[4] Y. Serpa and M. Rodrigues, Parallelizing Broad Phase Collision Detec-

tion for Animation in Games: A Performance Comparison of CPU and
GPU Algorithms.

[5] D. Tracy, S. Buss and B. Woods, Efficient Large-Scale Sweep and Prune
Methods with AABB Insertion and Removal.

[6] Joshua Shagam, Dynamic Spatial Partitioning for Real-Time Visibility
Determination.

[7] D. Coming and O. Staadt, Kinetic Sweep and Prune for Collision
Detection.


