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Abstract—Frequency analysis of images in Fourier domain has
wide range of applications, but it fails to localize those frequency
components in spatial domain. This is where wavelets come into
picture since they can localize the frequency components in the
spatial domain. In this paper we will discuss the implementation
of Haar and Daubechies wavelet analysis on an image. Later we
will discuss their applications in image compression and compare
wavelet compression with Fourier compression.

I. INTRODUCTION

A. Haar Wavelet Decomposition

From the theory of Quadrature Mirror filter bank, we know
that for a perfect reconstruction of a signal, we must have the
aliasing term as zero, which in turn gives us the relation that
the input and output filters, (essentially low pass and high pass
filters) must be orthogonal to each other. Following this the
discrete Haar wavelet function can be written as,

Each and every filter used in wavelet analysis is nothing
but a function of original low-pass filter H0. In case of 2D
discrete signal like images, the decomposition can be carried
out by first applying the low pass and high pass filter row-
wise followed by down-sampling and then repeating the same
process on the two outputs column-wise. This eventually gives
us four different components, diagonal (high-high), vertical
(high-low), horizontal (low-high) and approximation (low-
low). The approximation component is the averaged and down
sampled version of original image.

For full or complete decomposition, we iterate this process
on the approximation component until we get a single val-
ued approximation coefficient which cannot be decomposed
further.

B. Reconstruction

For a perfect reconstruction, the above process has to be
carried out in reverse order i.e. the filters are replaced by
their corresponding orthogonal pair and the down-sampling is
replaced by up-sampling by the same factor.

C. Daubechies Wavelet Analysis

The Daubechies Wavelet is a family of wavelets with
different orders of wavelet functions. Haar wavelet is a special
case of this family, also known as db1, with two-valued wavelet
signal. In this paper, we will use the 2nd order Daubechies
wavelet given by,

Since Haar is a two valued function, it is unable to address
a large change in image intensity value. For this reason, we
use a higher order member from this family to get a better
representation. The decomposition and reconstruction process
is similar in case of every wavelet transform.

II. IMPLEMENTATION

A. Decomposition

The first step in implementing any wavelet transform is
designing the low pass filter h0. Once we have selected the
low pass filter, all other filters are function of h0. Haar
decomposition of an image f, is obtained by first passing
it through a low pass filter and a high pass filter followed
by down-sampling and then repeating the same procedure
with the resulting two outputs column-wise. This will give
us 4 components of first level decomposition as mentioned in
section I(A) which are a, h, v and d. To decompose it further,
we take only the ‘a’ part of previous decomposition. An image
of size N x N, where N = 2p, can only be decomposed p times.
The down-sampling by two implies taking every alternate
sample of the filtered signal. If the signal is

[
a b c d

]
, the

down-sampling will return
[
a c

]
and

[
b d

]
.

In case of Daubechies wavelet (generalization of Haar in a
way), the only thing that changes from the Haar decomposition
are the low pass filter coefficients. In this implementation, we
use the db2 coefficients as mentioned in section I(C) as our
low pass filter. The low pass filter can be obtained by shifting
and translating the low pass filter. Once we have designed the
filters, the decomposition is same as the Haar decomposition
explained above.



B. Thresholding and Compression

We have seen that decomposition gives us four com-
ponents, namely, a, h, v and d. We know that ‘a’ is the
only low pass filtered component and we use it for further
decomposition. The other three, h, v and d contain information
above the changes in the image. An image consists of a
very few edges as compared to the constant or non-varying
regions. We can use this intuition to filter out the changes
or small variations that comes due to varying light intensity
or noise. This will not only improve the quality of our
image but also results in compression. Although many well-
known compression techniques have been developed using this
intuition, here, we will simply use the process of thresholding
for compression. After decomposition, we apply a threshold
filter to the h, v and d component so that we only retain the
actual edges in the image while getting rid of false variation
and noise. We take the ratio of number of non-zero intensity
elements in the original image to the number of non-zero
intensity elements in the decomposed image and call it the
compression ratio. Increasing the compression ratio leads
to lower size and resolution. We can repeat the thresholding
process at each level and observe the effect on the resulting
image which is discussed in detail in the Results section.

C. Reconstruction

Before reconstructing a decomposed image, we design the
inverse filters based on h0. For Haar transform, the inverse
filters are same as the forward filters. We first start with
up-sampling each component column-wise from the lowest
decomposition level. Up-sampling by a factor of two implies,
padding zeros after every alternate row/column. For example,
a matrix like this

[
a c

]
gets up-sampled by two as

[
a 0 c 0

]
(column-wise up-sampling). Once all four components have
been up-sampled, we then pass them through a corresponding
inverse filter of the forward filter (If forward was Low pass
filter, Inverse is High pass filter). We then add the filtered
signals pairwise, a + h and v + d to get two signals. These
two signals are again up-sampled and inversed to give a single
output which is nothing but the reconstructed image of this
particular level. This image is now treated as ‘a’ of the next
reconstruction level and the above process is repeated till we
get the final reconstructed image of the original image.

D. Complexity

The computational complexity of Fourier transform is
O(N2) and of fast Fourier transform is O(N logN). However
for wavelet transform of N x N image f (N), consists of two
convolution i.e. with low pass and high pass filter each with
cost 2N i.e. O(N). We then split the signal into two part of size
N/2 each and then recursively follow the same convolution and
splitting which gives us n(N/2) where n represents the number
of decompositions. Thus we get the total cost is 2N + n (N/2)
which is nothing but O(N). This shows that wavelet transform
is computationally more efficient than Fourier transform.

III. RESULTS

The above wavelet transform methods where evaluated
several times with different combination of decomposition
level and threshold values at each level. The Mean square error

is calculated using the mean of squared difference between the
pixels of original image and transformed image. The graph in
figure 2 shows that for different compression ratios, the wavelet
transform always performs better than Fourier transform. As
can be seen from the images, the quality of images after
compression on wavelet transform is a lot better than the
quality of images after compression on Fourier transform.
One thing to my surprise here is that the Haar wavelet is
performing better then Daubechies wavelet. This might be due
the wrapping of the last two terms in the db2 matrix at the
beginning of the same row/column so as to treat it as periodic.

Fig. 1. Periodicity in db matrix

Fig. 2. Comparison of Fourier and Wavelet Transform

Fig. 3. (a) Fourier Transform, (b) 2-level Haar Transform with CR:10

IV. CONCLUSION

Wavelet transform is an excellent tool for visualizing
frequencies in the spatial domain. Its applications in image
compression have been widely studied and several efficient im-
age compression using wavelet transform have been developed.
We have seen that even simple threshold compression tech-
nique using wavelet transform out-performs Fourier transform.



Fig. 4. (a) Fourier Transform, (b) 2-level Haar Transform with CR:20

Fig. 5. a, h, v and d components of 1-level decomposition (a) Haar (b)
Daubechies Transform

Fig. 6. a, h, v and d components of 2-level Daubechies Transform

In addition, the wavelet based transform is computationally
more efficient than Fourier transform. In conclusion, wavelet
transform proves to be a powerful tool in image processing.
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